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Thus, our investigation of the nonstationary perturbation spectrum in a vertical chan- 
nel with permeable boundaries leads to the conclusion that an oscillatory convective 
instability can exist. For small values of the P&let number (a < 0.8 , cf. Fig. 3), as the 

Rayleigh number increases, transverse motion becomes unstable with respect to monoto- 

nic perturbations, i. e. at the critical value of Rayleigh number (curve A ) stationary 

convection begins to take place. For a > 0.8 the instability expresses itself in oscilla- 

tory perturbations ; after crossing the neutral line C (as R increases) an oscillatory con- 
vection occurs. 

Let us note in conclusion that c1osur.e of stationary levels has been detected earlier 
[3] in a study of convective motion stability in an inclined layer. In the present problem, 
the closure is accompanied not by stabilization as in [3], but by change in the mode of 
instability, namely by transition to oscillatory convection. 
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The purpose of this paper is to develop the asymptotic representation of certain integrals 
encountered in the analysis of the problem of wave motion in an unbounded viscous 
liquid. Attention is also drawn to incorrect application of the stationary phase method 

widely used in a number of recent publications p-211 dealing with the Cauchy-Poisson 
problem of waves on the surface of half-space or layer. 

1, Sretenskii p] published in 1941 a fundamental work on the subject considered in 
the present paper. The second Chapter of p] deals with the two-dimensional Cauchy- 
Poisson problem of waves on the surface of a viscous liquid of infinite depth. By succes- 
sive integral transformations of Fourier and Laplace he obtained for the first time an 
exact integral representation for the free surface shape. For the asymptotic calculations 

oftheintegrals obtained, the method of stationary phase was suggested. This method was 
developed by Kelvin and is well established in the problems of wave motions in ideal 
liquids. 
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This method is also applied in all publications listed in r2-21]. Unfortunately, a 
groundless application of it leads to incorrect determination of the asymptotic behavior 
of the free surface elevation in viscous liquids. 

Some examples are given in Sect. 2 of such incorrect application of the stationary 

phase method to integrals J1 and G1 in p, 41 that determine the shape of free surface 
arising from the initial o-type elevation in the two- and three-dimensional cases of 
liquids of infinite depth. We also demonstrate in Sect. J some other errors in r2-41. In 

Sect. 3 we develop the asymptotic expressions in the plane of variables x, f for the inte- 

gral 

rl 
; g e-2vtk’ _ co8 xk cos t -ffsdk 

0 

(1-l) 

where x is the dimensional coordinate, t is the dimensional time, Y is the kinematic 
viscosity factor, and 6 is the gravity acceleration. This notation is used in Eq. (46) of 

fll. Equation (1.1) was derived in cl] for a s~mp~fied description of the profile of waves 

9, caused by the elevation in the liquid surface S , concentrated at the origin of coordi- 
nates. 

The asymptotic representation of n is developed on the paths z = ct”, where L’= const > 
> 0 and a is an arbitrary real number for t -+ (x? or I + CX. In particular, it is shown 

that the stationary phase method is applicable for bia < a < 2. It is found in Sect. 4 
that the asymptotic representation for the integrals J1 and q are the same. This means 
that after all errors in the calculation of the asymptotic representation of J1, committed 
in r2] have been corrected, the results do not agree with those obtained by means of the 

simplified approach to the Cauchy-Poisson problem put forward by Sretenskii as early as 

in 1941. 

2. In @--211 the stationary phase method is applied for the derivation of a number of 
integrals. A typical example is the last integral on p. 339 in the paper [2](*) 

where x is the dimensional coordinate, t is the dimensional time, v is the kinematic 
viscosity factor, and g is the gravity acceleration. When calculating J, by the station- 
ary phase method, the authors apply the following formula (cf.(5.4) in IX]) : 

B 

s I# (a) cos I cp (a) da w 2n 

G I 1 
‘1% 

zcp” 
* (to) cos (2.2) 

Here to is the unique stationary point on (a, 8) and z -+ w. Assuming further that KX 

is a large parameter and 

ill (a) s 4--l!+.-‘/s, it,2 (a) (a2 - &Z - 1) =; - 2’i~Xa-‘A, A =: If2a (2.3) 
cp <(a) = lil (a) - .G a bl~* (a) 0 z 4 -‘/Q-% _ ,&V&-‘& 

*) An obvious misprint in the original is corrected here. 
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finding 50 = o”‘?f vz , the following result is obtained : 

The remainder term in (‘2.4) is not written out but it is confirmed that the formula is 

valid for o < ‘/z (cf. pp. 339,340 in c;?]). 

In connection with the above example of application of the stationary phase method 

in r’], let us make the following remarks: 
1) The use of the formula (2.2) for the calculation of J1 is not justified (*) because 

(2.2) is based on the assumption that both the amplitude * (a) and phase ‘p (a) are in 
dependent of the large parameter z when z -, on. The phase in J, does not depend on the 
large parameter z = Hx when z + oc,if ~ii =const,i.e. if f = 2oz / Kzv. Silbstit~lting 
this value into the amplitude of J,, we find that 9 (u) substantially depends on z , 

h (4 
Q(a)=Amexp 

h" (a) 
Zzo~(u?-b? -i) 

I (2.5) 

and it clear that the assumptions of (2.8) are not satisfied. 

2) Equation (2.4) leads to incorrect notions about the asymptotic behavior of integral 
Ji. For instance, if the values of K, Y and w are fixed, we have according to (‘2.4) for 

e-?K’ vd (2.6) 

Actually, the true expression for J, , as will be shown in Sect. 4, is: 
v.z 

Jl= 6’t 11 $-o(i)] (t+ =J) (2.7) 

3) Calculation of the asymptotic representation of J, is a fundamental step in I21 
because in this paper integral J1, - apart from a multiplier, determines the waves caused 
by the initial o-type elevation of the free surface of a viscous liquid of infinite depth, 

when treated as a two-dimensional problem (cf.(5.11), (5.1’2) and (6.1) in p]). All the 
ultimate results in this paper r23 are based on Eq. (2.4) and this leads to false ideas about 
the asymptotic behavior of waves. 

Similarly, the stationary phase method is used in other cases of the amplitude substan- 
tially dependent on the large parameter when calculating the following integrals : 

(4.12) and (5.11) in [4] ; (1.5) in [?] ; (X.5) in [S] ; (3.12) and (5.2) in PO] ; (1.5) in 
@l]; (3) in lJ.33; (2.14) and (3.8) in @4]; (3.1) and (6.1) in f173; (6) in @l]. 

In all the above quoted papers the stationary phase method is applied incorrectly and 

*) This error was pointed out by I. B, Simonenko and V. I. Iudovich. Let us quote the 
example given by Simonenko: formal application of the stationary phase method to the 
integral 

I (k) = y e-lcE cos ke” dE, (k-4 30) . 
yields 

Z (k) -i;l I’* cos + (k-, w) 

whereas a simple estimate shows that 

II(k)/ &T”dt = ..& (k-,m) 
u” 
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this has resulted in wrong formulas and erroneous physical interpretations. 
In the papers f4, ‘Y-10] the stationary phase method is applied in a wrong manner and 

its formula is misinterpreted. The authors quote the well-known equation (cf. (5.8) in 

f4-j and (3.13) cl-i 10-J ) B 

s 
J, (a) &q (a) da ‘I=f (2.8) 

c( 

It is obvious that (&9) is wrong because it follows from it that the zeros af the first 
term of the asymptotics are (exactly ? ) the same as the zeros of the approximate func- 

tion, if z is sufficiently great, (Thus, the zeros of the Bessel function Jo (2) for z + m 

would be the same as the zeros of cos (Z - Z&I). 
Let us consider this concealed sub~t~~tian of formulas in [4] ; having applied the sta- 

tionary phase method to integral G, (cE(5.9) in 141) 

the authors write (cf. (5, lo) in [4] ) 2 

(2.11) 

Obviously, even if integral (‘2.10) makes sense and allows the use of the stationary 
phase method with the change from Q I(?& eos @-It to 0 f(liR)-l] because 8 = 0 is the 
stationary point, Eq, (2.11) can be derived from (-2.10) only be means of (2.9). 

Equation (‘2.11) is of fundamental significance in f&J because, apart from a multiply- 
ing factor, G%determi_nes the waves caused by an initial 6 -type elevation of the free 

surface of a viscous liquid occupying half-space (cf. (6.1) in [4]) ( * ) 

From (2, X2) follows au obviously wrong conclusion that the zeros of the function g 
which describes the shape of the free surface of viscous liquid provided wi and gta f 4R 
are fairly great, are exactly the same as the zeros of the corresponding function for an 
ideal liquid, also when gtZ f 4R is great, 

*) In the original the notation fs F instead of R, 
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It must be pointed out that the paper [4] contains also a number of other inaccuracies. 
Thus, Eq. (5.10) is derived assuming o = hvrj2R eos 8 < ‘1% (ctthe text before (5.8) in 
[4]). Nevertheless, solutions (5.10) and (5.11) do not bear witness to this condition. 
Moreover, for the purpose of mechanical interpretation of Eq. (6.1) the motion of free 

surface of the liquid in a fixed space point (R = conat) is analyzed for t -, w, although 
in this case it is o which tends to infinity. 

In the same paper the authors wrongly apply the equation of the Laplace method which 
produces asymptotics with respect to one parameter, while calculating integrals (5.1) 

that depend on two parameters. The obtained values of these integrals are wrong when 
% > 6, b, > 0, which can be easily proved by comparing formulas 3.897, 8.253 and 
8.254 in the reference book by I. S . Gradshtein and I. M. Ryzhik “Tables of Integrals, 
Sums, Series and Products” (1958). The same criticism applies also to c2]. 

9, Let us now derive correct asymptotic equations for integrals such as (1. l), (2.1) 

and others considered in r2-211. We have already said in our introductory remarks that 
the author of [1 J analysed integral (1.1) when looking for a simplified description of 

the wave profile. By applying to it the method of “steady-state phases” for great values 
of gtZ / 42, he found that (approximately) 

(3-i) 

Besides (3. l), he derived also an expression for small values ofvt / z2(cf.Eq. (49) in 

PI) 
rl= 

Sgt” 
2nr” (3.2) 

Equation (3.1) can be conveniently rewritten as 

where qsis the solution of a corresponding problem for an ideal liquid, and factor e-* 

describes the effect of viscosity. Equation (3.3) plays substantial part in all problems 

considered in r2 -211. Formulas such as (3.2) are not derived in any of the papers c2-161 
and lJ8--213. 

Let us consider under what conditions Eqs. (3.1) and (3.9) describe asymptotic beha- 
vior of integral (1.1). Changing to dimensionless variables by means of 

E = hq, s, = a%!?, x1 = as 

and omitting subscripts in dimensionless variables, we have 
m 

5 
==z- 

: s e-2tua 
cos zu cos t Jfii du 

0 

(3.4) 

Integral j is a function of two variables, z and t. On the other hand, the well-known 
equation of the stationary phase method 

L1 
t-’ 

c . I# (4) eizQ ca) da = 
CL 

(where -c is the unique stationary point ‘p (a), a < z < p ) gives an asymptotic represen- 
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tation only with respect to one variable z + CC. It is, therefore, natural to ask on which 
paths in the plane of variables .r, I formula (3.1) is truly valid. Let us consider the 

family of paths 3 = CL*, where a is a definite real number and c is a positive constant; 

we shall now investigate in this family the asymptotic behavior of integral 2 when 

t--r a or z-+ DY. 

Theorem 1. Let 

tx / r = C = co11st > 0, a. < 5/‘$, t> 0, x>o 

Then for t -+ w 

+--&+0(i)] (3.6) 

or in dimensional variables 
?I=--- .;;” Ii +o (111 (3.7) 

In this case the estimate (3.6) is uniform for all & < ‘I’<~ - a, where a > 0. 

Proof. Asymptotic formula (3.6) is derived by means of iterated integration by 

parts. First, setting u = t-“V, we have from (3.4) 

C 
2s F 

_r 
=nI/t ;\ 

ye-=” coa (c-9”+ v”)cos t’f4 v dv 

(a =c5/4* a--l/a<=/a, t-*mo) (3.8) 

Let us now point out that under such conditions the third factor in the integrand has 
a greater effect on the asymptotic behavior of 5 , den t -, CQ , than the second factor. 

This determines the choice of procedure for the integration by parts. Ass~lming that 

dg = cos 1X1* ;’ dr, we have from (3.8) 

<= $[- .r1+ Jr + J:J (3.9) 

where 

Ji = t-4’” T e -2v” cos (f-1 1” -‘:? v’) sin talr v dv 
. 
0 

ca 

Js z t-‘f* 
s 

8~4 e-=” cos (,-It”-“a 02) qn tY* v dv 

0 
co 

J3 =t”-% 
s 

Z@v?ea2dsin j,-lt~-% v'J)sin t%v dp 

0 

Integrating Jl by parts (dy = sill tai4 udv), we obtain 

J,=+[I-JII~--J~~J 
(3.10) 

where M 
Jll - 8 

s 
v~~-*‘~cos (c-lt’-+ 9) cos tS’, v dv 

0 
co 

JI:! z &-It”+ 
, 

\ 
ve-2v’ sin (e-It x-‘/~ VC) cos t’f* v dv 

. 
0 

It can easily be shown that J,, = o (1) when 1 -* CQ. Indeed, whenJz, is integrated 

by parts, we have 

f,l = - Jill + Jm + Jll, 

where 
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Jul= t-*/a ’ 24 v?eV2v’ Cos (c-lta-‘/e 9) sin ta14 v dv = 0 (t-‘/l) 
s 
0 

Jl13= 16 c_lt'*-'/4 ' v4e-2n4sin (C-lta-'/Z v?)sin t/d v du= 0 (t"-'/d) 
s 
0 

Hence, when a < 6/4 , we have 

Jn = 0 (11, t4ca (3.11) 

To prove that Jr, = CJ (1) when t -, c-c is rather more difficult. When Js2 is integrated 

by parts, we obtain 

where 
Jr, = - Jr,, + Jr,, - J12.3 

J121= 0 (t+‘y , 51~2 = 0 (ta-“d), t_, 00 

JpA3 = 4c-Z t’=-‘h~ ,@V’ 

5 

COS (c?ta-‘/2 v2) sin t% vdv = 0 (t2r-‘/y (3.12; 

The first two estimates produce the required result because a < O/,, but the third esti- 
mate does not. However, it can be easily seen that with subsequent iterated integration 
by parts n -2 times, J,, will be given greater weight, namely 

J123 = 0 (t Y,+(a-7,) n ). t-*cm (3.13) 

Thus, if the required estimate is to be obtained, Jiz3 must be integrated by parts until 
the following inequality is satisfied: VC + II (a - “/,I < 0 

We have then from (3.12) and (3.13) that J,, = o (1). From (3.10) and (3.11) we can 
now deduce that 

JI=& +o(l)l, t+m (3.14) 

In a very similar manner it can be found that 

J, = o (t-2), J3 = 0 (t-Z), t4oo (3.15) 

The second estimate can be obtained only by integration by parts until the following 
condition is satisfied : 

B/d + n (a - 5/o < 0 

Theorem 2. Let 

t6 / x4 = c = const or z = C-‘l’ $4, x> 0, t>o 

Then for z 4 CO 
S te’ SC 

EC----_ 1 cos 
2 I/n 2’2 ( 

P/4x- +)+0(G) 

or in dimensional variables 

1 g ( > 
‘I2 tse-‘/8 c 

q=; 7 ~ cos gt2 /4x- 
X% ( a) +o (7) 

(3.16) 

(3.1-i) 

Proof. Assuming ~12 = tW and allowing for the condition P = cx4 , we derive 

4 = s tZ 
n52 s 

43 ve-2cu’ COS t9 
te 

-g- (v,” - v) dv + r ~e-‘~~” cos yj (I?+ v) dv 1 (3.18) 
0 0' 

The stationary phase method may be applied to the first integral in (3.18) using Eq. 
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(3.5). From the conditions of the theorem we have 

11, (v) z.z &?-2cv’ , ql (n) = pa - v, z -_ $ = c’l’ ta’& -3 co, ‘5= ‘j.2 

All conditions which must be satisfied if Eq. (3.5) is to be legitimately applied can 

be easily found. In particular, amplitude 1c) (0) and phase ‘p (v) do not depend on the para- 
meter z -, 00. The second integral in (3.18) is easily estimated by lneans of integration 
by parts, and then (3.16) is obtained. 

Equation(3.5) can be transferred also to the case when amplitude 9 (a,~) depends on tire 
parameter s but only to a slight extent. Possibility of such situation is pointed out in the 

book by J. J. Stoker (*). Obviously, some additional investigation is required in this case. 

Theoerem 3. Let tQ = cx > 0; a and n are such that 

Then, for x -+ m 

or in dimensional variables 

(3.20) 

Proof. Assuming ~2;’ = u2, we transform (3.4) as follows : 

4 = F (0, 1) + f- (0, 1) + I’ (I, cc) + I- (l, 00) 
b 

I+ (a, b) = 5 5 VC-~~” cos k (v” rfr EV) dv 

ck =at@:’ , e---ctV-~ 

(3.22) 

Setting du =3 k (2v & e) cos k (~2 & EV) dv and integrating by parts, we obtain the fol- 
lowing estimates : 

I+ (1, 00) = 0 (St-=), t-+m (3.22) 

In order to compute i* (0,1) we expand the exponential term in the integrand into 
a Maclaurin series in the vicinity of 0. Using the asymptotic representation of Fresnef 
integrals, we obtain 

I+ f(j,lf =o (St-a), t-em (3.23) 

I- (0,1) = sE 71 ( ) vn 

2n f/t -F exp -SE 
* 

- cos - - -+ ( cPa 
4 > 

+ 0 (&St-“) (3.21) 

Let us unify (3. ;21)-(3.34) and expand the exponential into a series in I/s a.“. Leaving 

only those summands the order of which is no higher than that of the remainder, we arrive 

at (3.19). 
Theorem 4, Let 

5 = ct”, u > 2, t > 0, x> 0 or t = c = const > 0 

Then, for x + CO, 

*) Editorial Note. J. J. Stoker, Water Waves: the Mathematical Theory with Apple- 

catirms. Interscience Publishers, Inc., New York, 1957. 
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E= (3.25) 

or in dimensional variables 

tl = $$ [13_o(i)l (3.28) 

As in the case of Theorem 1, the proof consists of the iterated integration by parts, 
In the present case we set: 

u co9 (ct”-‘1% 2 d u ) v = dy for odd-numbered steps 
u sin (ct a-‘f’ v’) dv = d!t for even-numbered steps 

It may seem at first that estimate (3.25) covers a wider range of values of a > 6/,. 
However, the remainder can be estimated only for a > 2. To prove our theorem in the 
second case (t = const, x -, =f it is necessary to change in the above substitution for- 
mulas from ctQ to z and from t to c. 

4, Let us now analyze the integrals appearing in @-211; we shall take as an example 
integral (2.1) and prove that the asymptotic behavior of (2.1) is determined by expres- 
sion (3.7) if a < n/r and by (3.26) if a > 2. 

Setting u = (2$)-‘/a and changing to dimensionless variables x, and t, we obtain 

from (2.1) 
J1 =- & (1% + la), B = (18 y-2,+* (4.1) 

B 

J 2,3 = 
!i 

‘PI (U) e-2t=*ch w cosxu 93 (u) co9 t JG q-Q (u) du 
0 sin sin 

The functions YPk in the above formula can be written out as series 

Q(u)= i a fin (u’!a)n (k=i,2,3,4) (4.2) 
n=o 

converging in the vicinity of the point u = 0,while (Pk (0) = 2. The exponential asymp- 

totics of integrals J, and J, on the paths t = eta (a < 6fo, a > 2) is produced by the 

vicinity of the point u = 0, because it is easy to estimate the upper limit of the corre- 

sponding integrals on the segment [a, B] and such estimate takes the form of exp (-mt), 

m > 0 when t -+ x). On the segment [O, a] the integrand in f, is practically the same 
as the integrand in Sretenskii’s integral, provided a is sufficiently small. It can be easily 
shown that Theorems l- 4 of Sect. 3 apply to integral J,in which 3 = E and e is suffi- 
ciently small. It is necessary to use substitution ucpzz = 8’ u2 instead of u = t-‘A ~2. 

In a similar manner (cf. Sect. 3) it can be shown that 

J$ = 0 (f-3, t -V CO on the paths z = da, a < % 
JT, = o (t2 / a?), z -+ ~3 on the paths X = eta, a > 2 

It follows that in dimensioned variables 

J1= $Ttl+o(l)l, t--Pm on the paths 2 =ct” , a <% 

vv 
J’:=-7 1% + o (f)]. on the paths z =cP, a > 2, x -+ 00 

Note 1, As has been already said in Sect, 2, integral (2.1) in CZj was actually cal- 
culated on the basis of assumptions (2.3). In this case, functions [P& (u) E 1 (k = I, 2, 
3, 4) and the integrand in JI is (exactly !) the same as the integrand in Sretenskii’s 



integral. This means,thaz after al7 errors in calcuiaring J1 are put right, the results will 
not agree with those derived by means of the simplified consideration of the Cauchy- 

Poisson problem, 

Note 8. The arguments in Sect. 3 that led to the derivation of the asymptotics on 

the paths 5 = ct’ can be easily applied also to the three-dimensional problem of waves 

caused by a stimulus concentrated at the point of origin of coordinates on the surface 

of a viscous liquid in half-space or layer. 

The authors thank G, M, Bezdudnyi, I. B. Simonenka and V. I. Iudovich for discussing 
the results of the present paper. 
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There is a simple analogy between plane problems of nonlinear filtration and problems 
of.longitudinal shear of nonlinearly elastic and plastic solids which makes it possible to 
transfer results and problem formulations from one field to the other. We formulate this 
analogy in explicit form (Sect. 1). consider some examples and consequencies (Sect. ‘2), 
and justify a variational principle for the equations of nonlinear filtration, whit\ together 
with the maximum principle yield estimates for the integral characteristics of a filtra- 
tion stream {Sect. 3), 

1, 1”. The system of equations of plane nonlinear filtration of an ~comp~ssible fluid 
consists of the filtration law equations and the continuity equation fl. a] 

gradW = - Q, (w) w / w, div w = 0 (1.1) 


